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Emergence of cooperation among interacting individuals
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We study the evolution of interacting individuals located on the sites of a regular lattice. The individuals
play a two action game in which the players either cooperate or defect with respect to a certain issue. The main
rule of the game is that a player does not change his action when he and his opponent have held the same
action in the previous round. Numerical simulations performed on a square lattice show a stationary state in
which the lattice has a finite number of cooperators and defectors and two frozen states, one full of cooperators
and the other full of defectors.@S1063-651X~99!03806-4#

PACS number~s!: 02.50.Le, 05.50.1q, 64.60.Ht
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I. INTRODUCTION

The problem of the conditions for emergence of coope
tion among individuals who behave according to their se
interest was introduced and analyzed by Axelrod@1#. The
analysis is made within the framework of game theory by
use of atwo actiongame known as the prisoner’s dilemma
which the players either cooperate or defect with respect
certain issue. The prisoner’s dilemma game is such that
any choice of one player, cooperation or defection, the o
gets a higher payoff by choosing the defensive strategy
always playing defection. However, if both players choo
such a defensive strategy the total payoff will be smaller th
the total payoff they would get if both had chosen coope
tion. This is the static solution of the game.

The dynamical approach to the problem was introdu
by Axelrod @1# and widely used by other authors@2,3#. At
each move, the players revise their choices and play acc
ing to specific rules or, using a more appropriate term use
game theory,strategies. The next move may depend only o
the last move or may include the whole history of the ga
so far. The strategy may be deterministic, such as the tit-
tat strategy, or probabilistic. Here we consider the evolut
of the game to be a Markov process in which strategies
probabilistic ones and depend only on the last move. Mo
over, the Markov process is considered to be of the cont
ous time type, described by the master equation, in con
to a probabilistic cellular automaton in which the states
updated synchronously.

In this paper we deal with the problem of finding th
conditions for the emergence of cooperation in the evolut
of games within the context of the technical resources o
representation by lattice gases and its formalism. Thus,
present models for the evolution ofN interacting individuals
located on the sites of a lattice. The individuals play the t
action game only with individuals belonging to a sm
neighborhood which intends to simulate real interactio
among individuals of a population. Similar spatial gam
have been considered before by several authors@4–9#. In a
narrower context, we come to focus more specifically on
work developed by Szabo´ and Tőke @9# and related to it we
aim, in this article, to obtain similar results with distinct an
much more simplified rules to be described below.
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The main rule of the game is that a player does not cha
his action when he and his opponent have held the s
action in the previous round. This leads to the existence
two frozen~absorbing! states, one in which the lattice is fu
of cooperators and the other full of defectors. Numeri
simulations were carried out in one and two dimensio
Simulations on a square lattice have shown that besides
two frozen states there is also a stationary active state
which the lattice has a finite density of cooperators and
fectors. Our simulations show that the active state is pres
in two dimensions but not in one dimension.

II. MODEL

Consider a population ofN players located on the sites o
a regular lattice. The game evolves as a succession of ro
occurring at time intervals in which the individuals play e
ther cooperation~C! or defection (D). At each time step a
player, chosen at random, revises his action according
rule ~strategy! that specifies the outcome depending up
what his neighbors have played in the previous round. T
model is a stochastic process governed by a master equ
whose transition rates will be given below.

A given player interacts only with the players belongin
to a small neighborhood, here defined to be the nea
neighbor players. But, following Axelrod@1#, we assume tha
a given player interacts with them one at a time. Four p
sible outcomes may occur in a two action game betwee
given player and his opponent:CC, CD, DC, and, DD,
which Nowak and collaborators@3# call ‘‘reward,’’ ‘‘loss,’’
‘‘temptation,’’ and ‘‘punishment,’’ respectively. The rule
we propose for conducting the game are distinct from th
advanced by Szabo´ and Tőke @9#.

First of all, a player is chosen at random, say playei.
Second, this player revises his action in the following wa

A neighboring opponent, say playerj, is chosen also a
random.

~a! If in the previous round both players,i andj, have held
the same action, that is, if the previous outcomes were ‘
ward’’ or ‘‘punishment,’’ then the playeri does not change
his action and plays as before.

~b! If, on the other hand, they have held distinct actio
then two cases should be considered.
6419 ©1999 The American Physical Society
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~1! Playeri has playedC and playerj has playedD, that
is, the previous outcome was ‘‘loss.’’ In this case playei
playsD, with a transition ratea.

~2! Playeri has playedD and playerj has playedC, that
is, the outcome was ‘‘temptation.’’ In this case anoth
neighboring opponent, say playerk, is chosen at random. I
playerk has playedC then playeri changes his action, an
playsC, with a transition rateb1. If, however, playerk has
playedD then playeri changes his action, and playsC, with
a transition rateb2.

The model has three parametersa, b1, and b2, but they
can be reduced to only two if one rescales the time. Thus
define the retaliation parameterr 5a/b2 and the cooperation
parameterc5b1 /b2. The parameterr may be interpreted a
the strength with which a player retaliates against his op
nent who has defected when he has cooperated. Increa
the strength of retaliationr we expect a decrease in the num
ber of cooperators. The parameterc gives the degree of co
operation among individuals. Increasingc we expect an in-
crease in the number of cooperators.

In a formal way, to each sitei we attach a dynamic vari
ableh i that takes the values 0 or 1 according to whether
player at sitei chooses defection or cooperation, resp
tively. The transition ratewi(h) from h i to 12h i is then
given by

wi~h!5
1

z (
j

S h i~12h j !a1~12h i !h j

1

z21

3 (
k(Þ j )

@b1hk1b2~12hk!# D , ~1!

where j andk are nearest neighbors ofi andz is the lattice
coordination number. The master equation that governs
time evolution of the probability P(h,t) of h
5(h1 ,h2 , . . . ,hN) at time t is given by

d

dt
P~h,t !5(

i
$wi~h i !P~h i ,t !2wi~h!P~h,t !%, ~2!

whereh i5(h1 , . . . ,12h i , . . . ,hN).
We are mainly interested in the density of cooperatorr

5^h i&. In the simple mean field approximation the time ev
lution of this quantity is given by

d

dt
r5r~12r!@2a1b1r1b2~12r!#. ~3!

The stationary solutions arer50, the full defection~D!
state,r51, the full cooperation~C! state, and

r5
12r

12c
, ~4!

the active~A! state. Linearization aroundr50 shows that
the D state is stable forr .1 and unstable forr ,1. Linear-
ization aroundr51 shows that theC state is stable forc
.r and unstable forc,r .
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III. NUMERICAL SIMULATION

We have simulated the model in one and two dimensio
The model exhibits two frozen~absorbing! states: The full
cooperator state~C! in which r51 and the full defector~D!
state in whichr50. In addition to these two frozen states th
model may display an active state~A! for which 0,r,1.
Our simulations indicate that the active state is presen
two dimensions but not in one dimension.

The phase diagram for the one-dimensional case disp
only the two frozen states separated by a first order transi
line. The full defection state occurs forr .1 whereas the full
cooperation state occurs forr ,1, independent of the value
of c. The results were obtained for a chain of 1000 sites w
periodic boundary conditions. The initial state was a co
plete random state, that is, a configuration in which each
was occupied by a cooperator or by a defector with eq
probability. The number of Monte Carlo steps varied fro
104 to 106.

In two dimensions, we have simulated the model on
square lattice with 1003100 sites starting with a complet
random configuration of players. We have used a numbe
Monte Carlo steps that varied from 104 to 106. The phase
diagram, shown in Fig. 1, displays three phases: the fro
full cooperation state~C! with r51, the frozen full defection
state~D! with r50, and the active state~A! with 0,r,1.
The active state is present only within the regionr ,1 and
c,1. In this region there are two transition lines correspon
ing to the transitionsC-A and A-D. The densityr varies
continuously as one crosses these two lines. In the regior
.1 andc.1 there is a transition line corresponding to t
transition C-D in which the density jumps from the valu
r51 to r50. The three lines meet at the pointc5r 51.

As one variesr for a fixed value ofc,1 the densityr
varies continuously as shown in Fig. 2. Each point in t
figure was calculated by using 104 Monte Carlo steps. The
transition from theA state to the frozenD state is a continu-
ous phase transition and its critical behavior is in the sa
universality class as the direct percolation model. We h

FIG. 1. Phase diagram in the (r ,c) plane obtained from numeri
cal simulation on a square lattice. The three phases are full co
erator ~C! state for whichr51, active state~A! for which 0,r
,1, and full defector state~D! for which r50. The transition lines
C-A and A-D are critical lines whereas the lineC-D is a discon-
tinuous transition line. The three lines meet at the pointr 5c51.



-
th
pl

nd
s

r
r
in
to

ice
he
z
h
m
d
te
on

ol-
ers
m-
ms

the
at

dis-

.
ent
eter
ur

ex-

to ve

PRE 59 6421EMERGENCE OF COOPERATION AMONG INTERACTING . . .
calculated the critical exponentb related to the order param
eter and found results which are in fair agreement with
known results for such a universality class. As an exam
we have plotted in Fig. 3, for the case ofc50, the lnr
versus ln(rc2r) and seek the best linear fit. We have fou
for this caser c50.80060.001 and, from the slope of thi
plot, the critical exponentb50.5860.01, which is in fair
agreement with results for direct percolation in 211 dimen-
sions @10#. Each point was calculated by using 106 Monte
Carlo steps. Also, as expected, we found that, for 0,c,1
the transition from theA state to the frozenC state is also
continuous and belongs to the same universality class.

We remark that the caser 5c51 corresponds to the vote
model @11#. It is known that in two dimensions the vote
model has only two stationary states independent of the
tial conditions@11#. In the present case they correspond
the frozenC andD states.

Our final result comes from the comparison with a latt
with a few number of players interacting according to t
same rules. In this case, one observes only the two fro
states. For fixed values of the transition rates one reac
either state depending on the initial conditions. As the nu
ber of players grows to a large number of players the mo
ends up exhibiting only one of them, or the active sta
independent of the initial condition. So, this comparis

FIG. 2. Density of cooperatorr versus the parameterr for sev-
eral values ofc, obtained from numerical simulations. From left
right the values ofc are 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 0.9.
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helps to show clearly that cooperation or defection are c
lective phenomena that do not depend on how the play
choose their actions in the beginning of the game. It is i
portant to note that such a behavior is typical for all syste
presenting absorbing states.

IV. CONCLUSIONS

The first result of the analysis conducted above is that
model, in two dimensions, exhibits, in a way similar to th
of Szabo´ and Tőke @9#, two frozen~absorbing! states: the full
cooperation (r51) state and the full defection (r50) state.
In addition, as a summary of the above, the model also
plays an active state for which 0,r,1 . The full defection
state occurs for sufficiently large values ofr and the full
cooperation state occurs for sufficiently large values ofc. For
certain combinations ofc andr we also have an active state

The second result has to do with the critical expon
associated to the power law behavior of the order param
when the transition rates approach their critical values. O
numerical results for the critical exponentb put the present
model into the universality class of direct percolation as
pected according to the conjecture by Grassberger@12# and
Janssen@13#.

FIG. 3. Plot of lnr versus lnDr whereDr 5r c2r for the case
c50. The three lines correspond, from left to right, to tentati
values ofr c50.798, 0.800, and 0.802. The best linear fit givesr c

50.80060.001 and the critical exponentb50.5860.01.
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